Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sci Data ; 10(1): 374, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20237750

ABSTRACT

With the urgent need to implement the EU countries pledges and to monitor the effectiveness of Green Deal plan, Monitoring Reporting and Verification tools are needed to track how emissions are changing for all the sectors. Current official inventories only provide annual estimates of national CO2 emissions with a lag of 1+ year which do not capture the variations of emissions due to recent shocks including COVID lockdowns and economic rebounds, war in Ukraine. Here we present a near-real-time country-level dataset of daily fossil fuel and cement emissions from January 2019 through December 2021 for 27 EU countries and UK, which called Carbon Monitor Europe. The data are calculated separately for six sectors: power, industry, ground transportation, domestic aviation, international aviation and residential. Daily CO2 emissions are estimated from a large set of activity data compiled from different sources. The goal of this dataset is to improve the timeliness and temporal resolution of emissions for European countries, to inform the public and decision makers about current emissions changes in Europe.

2.
Atmospheric Chemistry and Physics ; 21(9):7373-7394, 2021.
Article in English | ProQuest Central | ID: covidwho-1229419

ABSTRACT

This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we provide weather-normalized estimates based on a machine learning method (gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalized satellite-estimated NO2 column changes with weather-normalized surface NO2 concentration changes and the CAMS regional ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions, and, conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average reduction estimates based on either satellite observations (-23 %), surface stations (-43 %), or models (-32 %) are presented, showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled to the TROPOMI overpasses (-37 %), pointing out the importance of the variability in time of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based estimates.

SELECTION OF CITATIONS
SEARCH DETAIL